A marginalized pattern-mixture model for longitudinal binary data when nonresponse depends on unobserved responses.
نویسندگان
چکیده
This paper proposes a method for modeling longitudinal binary data when nonresponse depends on unobserved responses. The proposed method presumes that the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates, and can accommodate both monotone and non-monotone missingness. The approach involves a marginally specified pattern-mixture model that directly parameterizes both the marginal means at each occasion and the dependence of each response on indicators of nonresponse pattern. This formulation readily incorporates a variety of nonresponse processes assumed within a sensitivity analysis. Once identifying restrictions have been made, estimation of model parameters proceeds via solution to a set of modified generalized estimating equations. The proposed method provides an alternative to standard selection and pattern-mixture modeling frameworks, while featuring certain advantages of each. The paper concludes with application of the method to data from a contraceptive clinical trial with substantial dropout.
منابع مشابه
A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time
Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean struct...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملMarginalized transition random effects models for multivariate longitudinal binary data
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, interpretation and computation of marginal covariate effects can be difficult. Heagerty has proposed marginally specified logistic-normal models (1999) and marginalized transition models (2002) for longitudinal binary and categorical data in which the marginal mean is ...
متن کاملA MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES
A model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. In this model response indicator for the binary response can be dependent on the continuous response. A closed form for the likelihood is found. For data with a complicated pattern of missing responses some new residuals are also proposed. The model of multiplicative heter...
متن کاملParameter Identifiability Issues in a Latent Ma- rkov Model for Misclassified Binary Responses
Medical researchers may be interested in disease processes that are not directly observable. Imperfect diagnostic tests may be used repeatedly to monitor the condition of a patient in the absence of a gold standard. We consider parameter identifiability and estimability in a Markov model for alternating binary longitudinal responses that may be misclassified. Exactly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2007